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Resonant Gravitational Wave Amplification - Axion and Inflaton
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We demonstrate the parametric amplification of the stochastic gravitational wave
background during inflationary reheating and during axion/moduli oscillations.
This enhances the detectability of the string/inflationary gravity wave signal, leav-
ing a finger-print on the spectrum which might be found with future gravitational
wave detectors.

1 Introduction

The nature of the cosmological background of gravitational waves is a subject
of great interest at present, with many possible sources ranging from quantum
fluctuations in a string-dominated phase 1,2 or inflation 3, to oscillations of
cosmic string loops 4.

Here we focus instead on a powerful mechanism for distortion and am-
plification of any existing gravitational wave background - namely damped
parametric resonance due to oscillatory phases that the universe may have
undergone. Examples are provided by reheating at the end of inflation 5, an
oscillatory dilaton phase, or during coherent axion or moduli oscillations if
they form a significant portion of the dark matter.

We will discuss the amplification within the gauge-invariant Bardeen for-
malism. Using the gauge-invariant and covariant electric and magnetic parts
of the Weyl tensor gives similar results 6. The evolution of the transverse-
traceless (TT) metric perturbations hab are naturally described by the Fourier
mode functions hǫ,k, where ǫ = {+,×} are the polarisation states. The hk

a

satisfy:

ḧk + 3
ȧ

a
ḣk +

k2

a2
hk = 0 . (1)

Here a(t) is the scale factor of the universe which obeys the Friedmann Eq.:

(

ȧ

a

)2

=
κ

3
µ =

κ

3

(

1

2
φ̇2 + V (φ)

)

, (2)

aFrom now on we surpress the polarisation label. We also restrict ourselves to the case of
flat spatial sections.
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where κ = 8πG and µ is the relativistic energy density which we have specified
to be in the form of a scalar field φ, with potential V (φ). This gives us enough
freedom to model both reheating physics and the oscillations of the axion
condensate. Using Eq. (2), we can rewrite Eq. (1) as 7:

d2(a3/2hk)

dt2
+

(

k2

a2
+ 3

4
κp

)

(a3/2hk) = 0 , (3)

where p = φ̇2/2 − V (φ) is the pressure.

2 Parametric amplification of gravitational waves

Now to illustrate parametric resonance, consider the n-dimensional first order
system:

ẏ = P (t)y (4)

where P is any matrix with period T . Then Eq. (4) has n linearly independent
normal solutions of the form:

yi = pi(t)e
µit (5)

where the µi are the characteristic/Floquet exponents of the system and the
pi are functions of period T . Then the n characteristic numbers defined by
ρi = eµiT satisfy:

ρ1ρ2...ρn = exp

(

∫ T

0

TrP (s)ds

)

(6)

with repeated characteristic numbers counted accordingly. The trace of P (t)
is thus the crucial factor determining the existence of exponentially amplified
modes. If TrP (t) > 0 then eq. (6) implies that:

Πn
i=1ρi > 1 (7)

which implies that at least one of the ρi > 1 =⇒ µi > 0 and hence by eq. (5)
there is at least one unbounded, exponentially growing solution.

The archetypal example is provided by the Mathieu equation (n = 2):

ÿ + [A − 2q cos(2t)]y = 0 (8)

Let µ = max{µ1, µ2}. Then µ is non-trivially related to the parameters (A, q)
which span an instability chart consisting of an infinite hierarchy of resonance
bands where µ > 0 5. Defining ǫ = A/(2q) − 1, we plot µ vs. (ǫ, q) in Fig. (1)
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using the piecewise quadratic approximation 8,9. This shows that for ǫ < 0 the
resonance is particularly strong.

The key point we wish to make is that Eq. (3) takes the form of the Math-
ieu equation (8) when V (φ) = m2

φφ2/2, as appropriate for studying chaotic

inflation 5. In this case, φ evolves as Φ sin(mφt). Then the pressure is:

p = −
m2

φ

2
Φ2 cos(2mφt) (9)

yielding a Mathieu Eq. with parameters:

A(k) =
k2

a2m2

φ

, q =
3κΦ2

16
, ǫ =

32k2

3κa2m2

φΦ2
− 1 (10)

showing that in this case, unlike in the case of standard reheating with a posi-
tive coupling constant 5, ǫ < 0 is possible and gravitational wave amplification
can be significant if Φ ∼ Mpl.

The effect of the expansion of the universe decreases Φ and redshifts k,
causing a decrease of both A and q, though ǫ remains roughly constant. The
decrease of q to below unity is particularly important in stopping the resonance,
and there is thus a competition between the damping effect of the expansion,
and the amplification due to resonance.

One final important point regards the validity of temporal averaging. With
an oscillating scalar field it is common to replace µ and p with their time-
averages over an oscillation: µ and p. In the case that V (φ) ∝ φ2, the average
equation of state is that of dust, p = 0. From Eq. (3) this falsely predicts
that there is no resonant amplification of the stochastic gravitational wave
background during reheating or axion oscillations. This shows that temporal
averaging is invalid.

3 Applications

3.1 Inflationary reheating

The gravitational wave spectrum produced during inflation is nearly scale-
invariant. However, during reheating via a second order phase transition this
scale-invariance is broken and the rms value of the spectrum is amplified. From
the form of q in Eq. (10), this amplification is clearly strongly dependent on
Φ, the initial amplitude of inflaton oscillations. This implies that the breaking
of scale-invariance during reheating is much stronger in chaotic inflationary
models than in new inflation, since Φ is much larger in the former case. More
discussion can be found in 6.
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Figure 1: The Floquet index µ on the stability-instability chart for Eq. (8). Notice the rapid
increase of µ for decreasing ǫ and increasing q.

3.2 The axion and massive moduli

The axion10 is an oscillating scalar field and a natural cold dark matter can-
didate. Unlike reheating, which lasts a very short time, the axion oscillations
would last a large proportion of the universe’s history, and hence might cause
significant tensor amplification. The axion pontential is given by 11,12:

V (φ) = Λ4

[

1 − cos

(

φ

fa

)]

(11)

with fa the axion decay constant and Λ = fama, where ma is the axion mass.
The standard QCD axion has Λ = ΛQCD ∼ 200 MeV, fa ∼ 1012 GeV and
gains a non-zero mass due to instanton effects at an energy around ΛQCD

12.
There also exist massive moduli in supergravity and superstring theories with
much less constrained parameters, for example one may take Λ ∼ 1016 GeV
and fa ∼ Mpl

11, with the moduli generically gaining mass at the epoch of
supersymmetry breaking.

To understand the implications of axion oscillations, let us approximate
Eq. (11) by the first, quadratic, term in the Taylor series. We can then use
the results of Eq. (10) with the replacement m2

φ → Λ4/f2

a so that roughly we

have A ≃ k2f2

a/(Λ4a2) and q ∝ Φ2. For the values given above, this yields

AQCD ∼ 1027
k2

a2
, Amoduli ∼ 10−26

k2

a2
(12)
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This implies that massive moduli are more likely to lead to large amplifications
of the background gravity wave spectrum since ǫ = A/(2q) − 1 < 0 for a huge
range of modes, while in the case of the QCD axion, only a tiny fraction of the
modes, near k = 0, have negative ǫ.

On the other hand, only if the moduli or axions started with near-Planck
expectation values, Φ ∼ Mpl, will there be significant amplification in either
case.

4 Conclusions

We have shown that damped parametric resonance is important in understand-
ing gravitational wave evolution during phases where a significant component
of the energy density of the universe oscillates, such as during a second order
phase transition or if the dark matter lies in an oscillating scalar field.

This parametric resonance amplifies the resident stochastic background,
changing the frequency dependence of the spectrum and enhancing the rms

amplitude. This implies that the possibilities of detecting the stochastic back-
ground of gravitational waves may be better than previously thought. In ad-
dition there is the intruiging possibility of indirect detection of the axion or
moduli via their finger-prints on the gravitational wave spectrum.
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